Cho $3$ điểm $A(0;3),B(2;2);C(m + 3;m)$. Giá trị của $m$ để $3$ điểm $A,B,C$ thẳng hàng là:
Trả lời bởi giáo viên
Gọi $d:y = {\rm{ax}} + b$ là đường thẳng đi qua $A$ và $B$.
$\begin{array}{l}A(0;3) \in d \Leftrightarrow a.0 + b = 3 \Leftrightarrow b = 3\\B(2;2) \in d \Leftrightarrow a.2 + b = 2\\ \Rightarrow \left\{ \begin{array}{l}b = 3\\2a + b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 3\\a = - \dfrac{1}{2}\end{array} \right. \Rightarrow d:y = - \dfrac{1}{2}x + 3\end{array}$
Để $3$ điểm $A,B,C$ thẳng hàng thì $C(m + 3;m) \in (d):y = - \dfrac{1}{2}x + 3$
$ \Leftrightarrow m = - \dfrac{1}{2}\left( {m + 3} \right) + 3 \Leftrightarrow \dfrac{3}{2}m = \dfrac{3}{2} \Leftrightarrow m = 1$.
Vậy $m = 1$.
Hướng dẫn giải:
- Viết phương trình đường thẳng $(d)$ đi qua 2 điểm cho trước $A;B$.
- Để $3$ điểm $A;B;C$ thẳng hàng thì $C \in (d)$