Chất điểm tham gia đồng thời hai dao động điều hoà cùng phương có đồ thị như hình vẽ. Phương trình dao động tổng hợp của chất điểm là:
Trả lời bởi giáo viên
Từ đồ thị hình vẽ ta có phương trình dao động của chất điểm 1 và 2: \(\left\{ \begin{array}{l}{x_1} = 3c{\rm{os}}\left( {\dfrac{\pi }{2}t - \dfrac{\pi }{2}} \right)cm\\{x_2} = 2c{\rm{os}}\left( {\dfrac{\pi }{2}t + \dfrac{\pi }{2}} \right)cm\end{array} \right.\)
=> Phương trình của dao động tổng hợp:
\(\begin{array}{l}x = {x_1} + {x_2} = 3c{\rm{os}}\left( {\dfrac{\pi }{2}t - \dfrac{\pi }{2}} \right) + 2c{\rm{os}}\left( {\dfrac{\pi }{2}t + \dfrac{\pi }{2}} \right)\\ = 3cos\left( {\dfrac{\pi }{2}t - \dfrac{\pi }{2}} \right) - 2\cos \left( {\dfrac{\pi }{2}t - \dfrac{\pi }{2}} \right)\\ = c{\rm{os}}\left( {\dfrac{\pi }{2}t - \dfrac{\pi }{2}} \right)cm\end{array}\)
Hướng dẫn giải:
Tổng hợp dao động: \(x{\rm{ }} = {\rm{ }}{x_1} + {\rm{ }}{x_2}\)
+ Biên độ dao động tổng hợp: \({A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}{\rm{cos}}\Delta \varphi \)
+ Pha dao động tổng hợp: \(\tan \varphi = \dfrac{{{A_1}\sin {\varphi _1} + {A_2}\sin {\varphi _2}}}{{{A_1}{\rm{cos}}{\varphi _1} + {A_2}{\rm{cos}}{\varphi _2}}}\)