Trả lời bởi giáo viên
Đáp án đúng: a
Trước hết ta chứng minh Ckn+Ck+1n=Ck+1n+1
VT=Ckn+Ck+1n=n!k!(n−k)!+n!(k+1)!(n−k−1)!=n!k!(n−k−1)!(1n−k+1k+1)=n!k!(n−k−1)!.k+1+n−k(n−k)(k+1)=n!(n+1)k!(k+1)(n−k−1)!(n−k)=(n+1)!(k+1)!(n−k)!=Ck+1n+1=VP
Ta có:
Ckn+2Ck+1n+Ck+2n=Ckn+Ck+1n+Ck+1n+Ck+2n=Ck+1n+1+Ck+2n+1=Ck+2n+2Ckn+3Ck+1n+3Ck+2n+Ck+3n=Ckn+Ck+1n+2(Ck+1n+Ck+2n)+Ck+2n+Ck+3n=Ck+1n+1+2Ck+2n+1+Ck+3n+1=Ck+1n+1+Ck+2n+1+Ck+2n+1+Ck+3n+1=Ck+2n+2+Ck+3n+2=Ck+3n+3⇒2Ckn+5Ck+1n+4Ck+2n+Ck+3n=Ck+2n+2+Ck+3n+3
Hướng dẫn giải:
Phân tích để xuất hiện sau đó áp dụng công thức Ckn+Ck+1n=Ck+1n+1