Câu hỏi:
2 năm trước

Biết rằng phương trình \({\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x + {\log _{\dfrac{1}{3}}}2\) có hai nghiệm \({x_1}\) và \({x_2}.\) Hãy tính tổng \(S = {27^{{x_1}}} + {27^{{x_2}}}.\)

Trả lời bởi giáo viên

Đáp án đúng: a

Điều kiện: \({3^{x + 1}} - 1 > 0 \Leftrightarrow x >  - 1.\)

Phương trình \( \Leftrightarrow {\log _3}\left( {{3^{x + 1}} - 1} \right) = 2x - {\log _3}2\)\( \Leftrightarrow {\log _3}\left( {{3^{x + 1}} - 1} \right) + {\log _3}2 = 2x\)

\( \Leftrightarrow {\log _3}\left[ {\left( {{3^{x + 1}} - 1} \right).2} \right] = 2x\)\( \Leftrightarrow \left( {{3^{x + 1}} - 1} \right).2 = {3^{2x}} \Leftrightarrow {6.3^x} - 2 = {3^{2x}}\)

\( \Leftrightarrow {3^{2x}} - {6.3^x} + 2 = 0\)\( \Rightarrow \left\{ \begin{array}{l}{3^{{x_1}}} + {3^{{x_2}}} = 6\\{3^{{x_1}}}{.3^{{x_2}}} = 2\end{array} \right.\)

Ta có \(S = {27^{{x_1}}} + {27^{{x_2}}} = {\left( {{3^{{x_1}}} + {3^{{x_2}}}} \right)^3} - {3.3^{{x_1}}}{.3^{{x_2}}}\left( {{3^{{x_1}}} + {3^{{x_2}}}} \right)\) \( = {6^3} - 3.2.6 = 180\)

Hướng dẫn giải:

Chuyển vế, đưa về cùng cơ số \(3\), biến đổi phương trình về phương mũ và giải phương trình.

Câu hỏi khác