Vòm cửa lớn của một trung tâm văn hóa có hình parabol. Gắn parabol vào hệ trục \(Oxy\) thì nó có đỉnh \(\left( {0;8} \right)\) và cắt trục hoành tại 2 điểm phân biệt, trong đó có 1 điểm là \(\left( { - 4;0} \right)\). Người ta dự định lắp vào cửa kính cho vòm cửa này. Hãy tính diện tích mặt kính cần lắp vào.
Trả lời bởi giáo viên
+ Gọi phương trình parabol là: $y=a{x^2} + {\rm{ }}bx + c $
Nhận thấy với $x = 0$ thì $y = 8$ suy ra $c = 8$.
Mặt khác \(\left( {0;8} \right)\) là đỉnh nên \( - \dfrac{b}{{2a}} = 0 \Leftrightarrow b = 0\)
Điểm $(-4;0)$ thuộc đồ thị hàm số nên phương trình $y=0$ có nghiệm \(x = - 4 \Rightarrow a = - \dfrac{1}{2}\).
Vậy phương trình parabol: \(y = - \dfrac{{{x^2}}}{2} + 8\)
Bài toán quy về tính diện tích được tạo bởi parabol với trục \(Ox\).
Ta có:
\(S = \int\limits_{ - 4}^4 {\left| { - \dfrac{{{x^2}}}{2} + 8} \right|dx} = 2\int\limits_0^4 {\left( { - \dfrac{{{x^2}}}{2} + 8} \right)dx} = 2.\left. {\left( { - \dfrac{{{x^3}}}{6} + 8x} \right)} \right|_0^4 = \dfrac{{128}}{3}{m^2}\)
Hướng dẫn giải:
- Tìm phương trình parabol.
- Sử dụng công thức tính diện tích hình phẳng giới hạn bởi các đường cong.