Khoảng cách giữa hai đường thẳng \({d_1}:\dfrac{x}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{3},{d_2}:\dfrac{{x + 1}}{1} = \dfrac{y}{3} = \dfrac{{z + 1}}{{ - 2}}\) là:
Trả lời bởi giáo viên
Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {0;1;0} \right)\) và có VTCP \(\overrightarrow {{u_1}} = \left( {2; - 1;3} \right)\).
Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;0; - 1} \right)\) và có VTCP \(\overrightarrow {{u_2}} = \left( {1;3; - 2} \right)\).
Khi đó \(\overrightarrow {{M_1}{M_2}} = \left( { - 1; - 1; - 1} \right),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\3\end{array}&\begin{array}{l}3\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 2\end{array}&\begin{array}{l}2\\1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\1\end{array}&\begin{array}{l} - 1\\3\end{array}\end{array}} \right|} \right) = \left( { - 7;7;7} \right)\)
Vậy \(d\left( {{d_1},{d_2}} \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} = \dfrac{{\left| {\left( { - 7} \right).\left( { - 1} \right) + 7.\left( { - 1} \right) + 7.\left( { - 1} \right)} \right|}}{{\sqrt {{7^2} + {7^2} + {7^2}} }} = \dfrac{1}{{\sqrt 3 }}\)
Hướng dẫn giải:
- Tìm hai điểm đi qua của hai đường thẳng.
- Tìm các VTCP của hai đường thẳng.
- Sử dụng công thức tính khoảng cách giữa hai đường thẳng \(d\left( {\Delta ,\Delta '} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\)