Câu hỏi:
2 năm trước
Với a,b là các số tự nhiên, nếu 11a+2b chia hết cho 8 thì a+6b chia hết cho số nào dưới đây?
Trả lời bởi giáo viên
Đáp án đúng: a
Xét 11.(a+6.b)=11.a+66.b=(11.a+2b)+64.b
Vì (11.a+2b)⋮8 và 64b⋮8 nên 11.(a+6.b)⋮8.
Do 11 không chia hết cho 8 nên suy ra (a+6.b)⋮8.
Vậy nếu 11a+2b chia hết cho 8 thì a+6b chia hết cho 8.
Hướng dẫn giải:
Nhân a+4b với 10, biến đổi rồi chứng minh dựa vào TC1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.