Câu hỏi:
2 năm trước

Trước khi xuất khẩu cà phê, người ta chia cà phê thành bốn loại: loại 1, loại 2, loại 3, loại 4 tỉ lệ nghịch với \(4;3;2;1.\) Tính khối lượng cà phê loại \(4\) biết tổng số cà phê bốn loại là \(300kg.\)

Trả lời bởi giáo viên

Đáp án đúng: d

Gọi khối lượng của bốn loại cà phê lần lượt là \(x,y,z,t\,\left( {kg} \right)\), \(\left( {0 < x,y,z,t < 300} \right)\).

Tổng số cà phê bốn loại là \(300kg\) nên \(x + y + z + t = 300.\)

Vì khối lượng cà phê loại 1, loại 2, loại 3, loại 4 tỉ lệ nghịch với \(4;3;2;1\) nên ta có:

\(4x = 3y = 2z = t\) hay \(\dfrac{x}{{\dfrac{1}{4}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{\dfrac{1}{2}}} = \dfrac{t}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{{\dfrac{1}{4}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{\dfrac{1}{2}}} = \dfrac{t}{1} = \dfrac{{x + y + z + t}}{{\dfrac{1}{4} + \dfrac{1}{3} + \dfrac{1}{2} + 1}} = \dfrac{{300}}{{\dfrac{{25}}{{12}}}} = 144\)

Vậy \(x = \dfrac{1}{4}.144 = 36\)

        \(y = \dfrac{1}{3}.144 = 48\)

        \(z = \dfrac{1}{2}.144 = 72\)

        \(t = 1.144 = 144\)

Khối lượng cà phê loại \(4\) là \(144\) kg.

Hướng dẫn giải:

+ Xác định rõ các đại lượng có trên đề bài.

+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ nghịch và tính chất tỉ lệ thức để giải bài toán.

Câu hỏi khác