Trong không gian với hệ tọa độ $Oxyz$, xét mặt cầu $\left( S \right)$ đi qua hai điểm $A\left( {1;2;1} \right);B\left( {3;2;3} \right)$, có tâm thuộc mặt phẳng $\left( P \right):x - y - 3 = 0$ , đồng thời có bán kính nhỏ nhất, hãy tính bán kính $R$ của mặt cầu $\left( S \right)$?
Trả lời bởi giáo viên
Gọi $I$ là tâm mặt cầu $\left( S \right),I\left( {a,b,c} \right)$ .
Suy ra \(a - b - 3 = 0 \Rightarrow a = b + 3 \Rightarrow I(b + 3;b;c)\)
\(I{A^2} = I{B^2} = {R^2}\) \( \Leftrightarrow {(b + 2)^2} + {(b - 2)^2} + {(c - 1)^2} = {b^2} + {(b - 2)^2} + {(c - 3)^2}\)
\(\begin{array}{l}
\Leftrightarrow {\left( {b + 2} \right)^2} + {\left( {c - 1} \right)^2} = {b^2} + {\left( {c - 3} \right)^2}\\
\Leftrightarrow {b^2} + 4b + 4 + {c^2} - 2c + 1 = {b^2} + {c^2} - 6c + 9\\
\Leftrightarrow 4b + 4c - 4 = 0\\
\Leftrightarrow b + c - 1 = 0 \Leftrightarrow c = 1 - b
\end{array}\)
\({R^2} = {\left( {b + 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( { - b} \right)^2} = 3{b^2} + 8 \ge 8 \Rightarrow R \ge 2\sqrt 2 \)
\(\min R = 2\sqrt 2 \) khi $b = 0$
Hướng dẫn giải:
+ Gọi tâm $\left( S \right)$ là $I\left( {a;b;c} \right)$
+ Tìm mối quan hệ của $a,b,c$ để biến đổi về 1 ẩn, sau đó đánh giá tìm min của $R$.