Trả lời bởi giáo viên
+) Xét đáp án A:$y = \sin x - 3x$ có: $y' = \cos x - 3.$
Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \cos x \le 1 \Rightarrow y' = {\rm{cosx\;}} - 3 < 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu} \in R \Rightarrow $ hàm số nghịch biến trên $R.$
Vậy hàm số ở đáp án A không đồng biến trên $R$.
+) Xét đáp án B: $y = \cos x + 2x$ có: $y' = {\rm{\;}} - \sin x + 2.$
Với $\forall {\mkern 1mu} {\mkern 1mu} x \in R$ ta có: $ - 1 \le \sin x \le 1 \Rightarrow y' = {\rm{\;}} - \sin x + 2 > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall x{\mkern 1mu} {\mkern 1mu} \in R$
Vậy hàm số đồng biến trên $\mathbb{R}.$
+) Xét đáp án C: $y'=3x^2\ge 0, \forall x$ nên hàm số đồng biến trên $R$.
+) Xét đáp án D: $y'=5x^4\ge 0, \forall x$ nên hàm số đồng biến trên $R$.
Vậy chỉ có hàm số ở đáp án A không đồng biến trên $R$.
Hướng dẫn giải:
+) Xét các hàm số theo từng đáp án.
+) Hàm số nào có $y' \ge 0$ với mọi $x \in R$ thì hàm số đó đồng biến trên R.