Câu hỏi:
2 năm trước

Tìm tập hợp các điểm biểu diễn số phức\(z\), biết rằng số phức \({z^2}\) có điểm biểu diễn nằm trên trục hoành.

Trả lời bởi giáo viên

Đáp án đúng: d

Giả sử $z = a + bi$ , ta có \({z^2} = {(a + bi)^2} = {a^2} - {b^2} + 2abi\).

Số phức \({z^2}\) có điểm biểu diễn nằm trên trục hoành khi \(2ab = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 0}\\{b = 0}\end{array}} \right..\)

Hướng dẫn giải:

Phương pháp tìm tập hợp điểm biểu diễn số phức

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)

Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) Sinh ra một phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a.{x^2} + bx + c\)

+) Elip: \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\)

Câu hỏi khác