Câu hỏi:
2 năm trước
Tìm biểu thức M, biết \(\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\, \cdot \,M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}\)
Trả lời bởi giáo viên
Đáp án đúng: b
\(\begin{array}{l}\,\,\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\, \cdot \,M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}\\M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}:\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\\M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}} \cdot \dfrac{{{x^3} - 8{y^3}}}{{x + 2y}}\\M = \dfrac{{5x(x + 2y)}}{{{x^2} + 2xy + 4{y^2}}} \cdot \dfrac{{(x - 2y)({x^2} + 2xy + 4{y^2})}}{{x + 2y}}\\M = 5x(x - 2y).\end{array}\)
Hướng dẫn giải:
Áp dụng quy tắc tìm phân thức chưa biết \(A.M = B \Rightarrow M = A:B\)
Sau đó sử dụng qui tắc nhân chia hai phân thức
Thực hiện phân tích đa thức thành nhân tử và rút gọn.