Trả lời bởi giáo viên
Điều kiện: \(x > 0,x \ne 4,x \ne 9\)
\(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\\ = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \dfrac{2}{{\sqrt x }}} \right)\\ = \dfrac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}:\dfrac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\ = \dfrac{{8\sqrt x + 4x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}\\ = \dfrac{{4\sqrt x \left( {2 + \sqrt x } \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\sqrt x - 3}}\\ = \dfrac{{4x}}{{\sqrt x - 3}}\end{array}\)
Vậy \(P = \dfrac{{4x}}{{\sqrt x - 3}}\) với \(x > 0,x \ne 4,x \ne 9\)
Hướng dẫn giải:
- Xác định mẫu thức chung
- Quy đồng mẫu thức các phân thức
- Cộng trừ các phân thức đã quy đồng
Chú ý sử dụng linh hoạt các hằng đẳng thức và các phép biến đổi đơn giản đã biết.