Một vật nhỏ dao động điều hòa dọc theo trục Ox với biên độ $5cm$, chu kỳ $2s$. Tại thời điểm $t = 0$, vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là
Trả lời bởi giáo viên
Ta có:
$\begin{gathered}A = 5cm \hfill \\T = 2{\text{s}} \to \omega = \frac{{2\pi }}{T} = \pi ra{\text{d}}/s \hfill \\\end{gathered} $
Tại t=0 $\left\{ \begin{gathered}x = 0 \hfill \\ v > 0 \hfill \\\end{gathered} \right. \leftrightarrow \left\{ \begin{gathered}{\text{cos}}\varphi = 0 \hfill \\\sin \varphi < 0 \hfill \\\end{gathered} \right. \to \varphi = - \frac{\pi }{2}$
$ \to x = Ac{\text{os(}}\omega {\text{t + }}\varphi {\text{) = 5cos(}}\pi {\text{t - }}\frac{\pi }{2})cm$
Hướng dẫn giải:
Vận dụng lí thuyết về các đại lượng trong dao động điều hòa và điều kiện cho trước của thời điểm $t=0$.