Một vật dao động điều hoà dọc theo trục $Ox$ nằm ngang, gốc $O$ và mốc thế năng ở vị trí cân bằng. Thời gian vật đi từ VTCB đến $A$ hết $0,5s$ và đi hết quãng đường $4cm$ Chọn \(t=0\) lúc vật qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là:
Trả lời bởi giáo viên
Ta có: Thời gian vật đi từ VTCB đến $A$ là :
\(\frac{T}{4} = 0,5 \to T = 2{\rm{s}} \to \omega = \frac{{2\pi }}{T} = \pi ra{\rm{d}}/s\)
Biên độ A = 4cm
Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi = 0\\{\rm{v = - A}}\omega {\rm{sin}}\varphi > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi = 0\\\sin \varphi < 0\end{array} \right. \to \varphi = - \frac{\pi }{2}\)
\( \to x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)
Hướng dẫn giải:
- Xác định \(\omega = \dfrac{{2\pi }}{T}\)
- Xác định biên độ $A$
- Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v = - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\dfrac{{{x_0}}}{A}\\\sin \varphi = - \dfrac{v}{{A\omega }}\end{array} \right. \to \varphi = ?\)