Câu hỏi:
2 năm trước

Một người chơi trò gieo súc sắc. Mỗi ván gieo đồng thời ba con súc sắc. Người chơi thắng cuộc nếu xuất hiện ít nhất 2 mặt sáu chấm. Tính xác suất để trong ba ván, người đó thắng ít nhất hai ván

Trả lời bởi giáo viên

Đáp án đúng: b

- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = {6^3} = 216\)

Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”

Số cách gieo được hai mặt 6 chấm là: \(C_3^2.1.1.5 = 15\) cách

Số cách gieo được ba mặt 6 chấm là: \(1\) cách

Số cách gieo được ít nhất 2 mặt 6 chấm là: \(n\left( A \right) = 15 + 1 = 16\) cách

Xác suất để người đó gieo thắng 1 ván là: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{16}}{{216}} = \dfrac{2}{{27}}\)

Do đó xác suất để thua 1 ván là \(1 - P\left( A \right) = 1 - \dfrac{2}{{27}} = \dfrac{{25}}{{27}}\)

- Tính xác suất để người đó thắng ít nhất 2 ván.

TH1: Thắng 2 ván, thua 1 ván

Xác suất để người đó thắng 2 ván thua 1 ván là \(C_3^2.\dfrac{2}{{27}}.\dfrac{2}{{27}}.\dfrac{{25}}{{27}} = \dfrac{{100}}{{6561}}\)

Xác suất để người đó thắng cả 3 ván là: \({\left( {\dfrac{2}{{27}}} \right)^3} = \dfrac{8}{{19683}}\)

Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:

\(P = \dfrac{{100}}{{6561}} + \dfrac{8}{{19683}} = \dfrac{{308}}{{19683}}\).

Hướng dẫn giải:

- Tính xác suất để người đó gieo súc sắc thắng.

- Tính xác suất để người đó thắng ít nhất hai ván.

Chi thành hai TH: thắng 2 ván và thắng 3 ván.

Câu hỏi khác