Cho hai điểm \(A(6;2)\) và \(B( - 2;0).\) Phương trình đường tròn $(C)$ có đường kính $AB$ là:
Trả lời bởi giáo viên
Gọi $I$ là trung điểm của $AB.$
Khi đó \(\left\{ \begin{array}{l}{x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{6 - 2}}{2} = 2\\{y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 0}}{2} = 1\end{array} \right. \Rightarrow I\left( {2;1} \right)\)
Mặt khác \(R = \dfrac{{AB}}{2} = \dfrac{{\sqrt {{{\left( {6 + 2} \right)}^2} + {{\left( {2 - 0} \right)}^2}} }}{2} = \dfrac{{2\sqrt {17} }}{2} = \sqrt {17} \)
Khi đó, $(C)$ có dạng là: \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)
Hướng dẫn giải:
Phương trình đường tròn (C) có đường kính AB có tâm I là trung điểm của AB và bán kính \(R = \dfrac{{AB}}{2}\). Sau đó áp dụng cách viết phương trình đường tròn có tâm tâm \(I(a;b)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Câu hỏi khác
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)