Tìm giá trị của m để đồ thị hàm số $y = {x^2} - 2x + m - 1$ cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
Trả lời bởi giáo viên
Xét phương trình hoành độ giao điểm ${x^2} - 2x + m - 1 = 0\,\,\left( * \right)$.
Để đồ thị hàm số $y = {x^2} - 2x + m - 1$ cắt trục hoành tại hai điểm phân biệt có hoành độ dương thì phương trình (*) có 2 nghiệm dương phân biệt.
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\S > 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 - m + 1 > 0\\2 > 0\\m - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 2\\m > 1\end{array} \right. \Leftrightarrow 1 < m < 2\).
Hướng dẫn giải:
- Xét phương trình hoành độ giao điểm \(y = 0\).
- Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương\( \Leftrightarrow \) phương trình có hai nghiệm dương
Câu hỏi khác
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)