Trả lời bởi giáo viên
Đáp án đúng: b
Xét nửa $\left( O \right)$ có $MC$ và $AC$ là hai tiếp tuyến cắt nhau tại $C$ nên $OC$ là phân giác $\widehat {MOA}$ do đó $\widehat {AOC} = \widehat {COM}$
Lại có $MD$ và $BD$ là hai tiếp tuyến cắt nhau tại $D$ nên $OD$ là phân giác $\widehat {MOB}$ do đó $\widehat {DOB} = \widehat {DOM}$
Từ đó $\widehat {AOC} + \widehat {BOD} = \widehat {COM} + \widehat {MOD}$$ = \dfrac{{\widehat {AOC} + \widehat {BOD} + \widehat {COM} + \widehat {MOD}}}{2} = \dfrac{{180^\circ }}{2} = 90^\circ $
Nên $\widehat {COD} = 90^\circ $ hay $\Delta COD$ vuông tại $O$ có $OM$ là đường cao nên $MC.MD = O{M^2}$.
Hướng dẫn giải:
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng trong tam giác vuông