Kết quả của phép chia \(\left( {2{a^3} + 7a{b^2} - 7{a^2}b - 2{b^3}} \right):\left( {2a - b} \right)\) là
Trả lời bởi giáo viên
Ta có \(2{a^3} + 7a{b^2} - 7{a^2}b - 2{b^3}\)\( = 2\left( {{a^3} - {b^3}} \right) - 7ab\left( {a - b} \right) \)\(= 2\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) - 7ab\left( {a - b} \right)\)
\( = \left( {a - b} \right)\left( {2{a^2} - ab - 4ab + 2{b^2}} \right) = \left( {a - b} \right)\left[ {a\left( {2a - b} \right) - 2b\left( {2a - b} \right)} \right]\)
\( = \left( {a - b} \right)\left( {2a - b} \right)\left( {a - 2b} \right)\)
Nên \(\left( {2{a^3} + 7a{b^2} - 7{a^2}b - 2{b^3}} \right):\left( {2a - b} \right)\)\( = {\left( {a - b} \right)}.(2a-b).\left( {a - 2b} \right):\left( {2a - b} \right) = \left( {a - b} \right)(a-2b)\) .
Hướng dẫn giải:
Phân tích đa thức bị chia thành nhân tử rồi thực hiện phép chia.