Câu hỏi:
2 năm trước
Hai tiếp tuyến tại $A$ và $B$ của đường tròn $(O)$ cắt nhau tại $I$ . Đường thẳng qua $I$ và vuông góc với $IA$ cắt $OB$ tại $K$. Chọn khẳng định đúng.
Trả lời bởi giáo viên
Đáp án đúng: b
Xét $\left( O \right)$có $IA,IB$ là hai tiếp tuyến cắt nhau tại $I$ nên $\widehat {AOI} = \widehat {KOI}$
Mà $OA{\rm{//}}KI$ (vì cùng vuông góc với $AI$) nên $\widehat {KIO} = \widehat {IOA}$ (hai góc ở vị trí so le trong)
Từ đó $\widehat {KOI} = \widehat {KIO}$ suy ra $\Delta KOI$ cân tại $K \Rightarrow KI = KO$.
Hướng dẫn giải:
Sử dụng tính chất hai tiếp tuyến cắt nhau và tính chất tam giác cân