Đề thi thử THPT chuyên Lam Sơn - 2021
Tiến hành thí nghiệm Y-âng về giao thoa ánh sáng, nguồn sáng phát ra đồng thời hai ánh sáng đơn sắc có bước sóng \({\lambda _1}\) và \({\lambda _2}\). Trên màn, trong khoảng giữa hai vị trí có vân sáng trùng nhau liên tiếp có tất cả N vị trí mà ở mỗi vị trí đó có một bức xạ cho vân sáng. Biết \({\lambda _1}\) và \({\lambda _2}\) có giá trị nằm trong khoảng từ \(400nm\) đến \(750nm\). N không thể nhận giá trị nào sau đây?
Trả lời bởi giáo viên
Giả sử \({\lambda _1} < {\lambda _2}\)
Gọi số vân sáng của bức xạ \({\lambda _1}\) giữa 2 vân sáng chung liên tiếp là \({n_1}\)
Số vân sáng của bức xạ \({\lambda _2}\) giữa 2 vân sáng chung liên tiếp là \({n_2}\)
Ta có: \(N = {n_1} + {n_2}\) và \(\left( {{n_1} + 1} \right){\lambda _1} = \left( {{n_2} + 1} \right){\lambda _2} \Rightarrow \frac{{{n_1} + 1}}{{{n_2} + 1}} = \frac{{{\lambda _2}}}{{{\lambda _1}}}\,\,\left( 1 \right)\)
Mặt khác, vì \({\lambda _1},{\lambda _2}\) nằm trong khoảng \(400nm \to 750nm\) nên \(\frac{{{\lambda _2}}}{{{\lambda _1}}} < \frac{{750}}{{400}} = 1,875\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow {n_2} < {n_1} < 1,875{n_2} + 0,875\)
Để ý thấy \(\left( {{n_1} + 1} \right)\) và \(\left( {{n_2} + 1} \right)\) phải là 2 số nguyên tố cùng nhau (ƯCLN phải bằng 1) để giữa 2 vân sáng chung không còn vân sáng chung nào khác.
Ta có bảng sau:
Vậy, ta thấy với \(N = 8\) thì không có giá trị nào thỏa mãn đề bài.
Hướng dẫn giải:
Vị trí vân sáng:\({x_s} = k.i = k.\frac{{\lambda D}}{a}\)
Sử dụng điều kiện 2 bức xạ giao thoa cho vân sáng tại 1 điểm: \({k_1}{\lambda _1} = {k_2}{\lambda _2}\)