Câu hỏi:
2 năm trước

Có bao nhiêu số tự nhiên $k$ thỏa mãn hệ thức: \(C_{14}^k + C_{14}^{k + 2} = 2C_{14}^{k + 1}\) 

Trả lời bởi giáo viên

Đáp án đúng: a

ĐK: \(0 \le k \le 12\,\,\left( {k \in N} \right)\)

\(\begin{array}{l}C_{14}^k + C_{14}^{k + 2} = 2C_{14}^{k + 1}\\ \Leftrightarrow \frac{{14!}}{{k!\left( {14 - k} \right)!}} + \frac{{14!}}{{\left( {k + 2} \right)!\left( {12 - k} \right)!}} = 2\frac{{14!}}{{\left( {k + 1} \right)!\left( {13 - k} \right)!}}\\ \Leftrightarrow \frac{{14!}}{{k!\left( {12 - k} \right)!}}\left[ {\frac{1}{{\left( {14 - k} \right)\left( {13 - k} \right)}} + \frac{1}{{\left( {k + 2} \right)\left( {k + 1} \right)}} - \frac{2}{{\left( {k + 1} \right)\left( {13 - k} \right)}}} \right] = 0\\ \Leftrightarrow \frac{1}{{\left( {14 - k} \right)\left( {13 - k} \right)}} + \frac{1}{{\left( {k + 2} \right)\left( {k + 1} \right)}} - \frac{2}{{\left( {k + 1} \right)\left( {13 - k} \right)}} = 0\\ \Leftrightarrow \left( {k + 2} \right)\left( {k + 1} \right) + \left( {14 - k} \right)\left( {13 - k} \right) - 2\left( {k + 2} \right)\left( {14 - k} \right) = 0\\ \Leftrightarrow {k^2} + 3k + 2 + {k^2} - 27k + 182 + 2{k^2} - 24k - 56 = 0\\ \Leftrightarrow 4{k^2} - 48k + 128 = 0\\ \Leftrightarrow \left[ \begin{array}{l}k = 8\,\,\left( {tm} \right)\\k = 4\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy có $2$ giá trị của $k$ thỏa mãn yêu cầu đề bài.

Hướng dẫn giải:

Áp dụng các công thức chỉnh hợp, tổ hợp \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}\,;\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\,\,\)

Câu hỏi khác