Câu hỏi:
2 năm trước

Cho tam giác $ABC$ vuông tại $A$ , đường cao $AH$ . Cho biết $BH = 4cm,CH = 9cm$. Gọi $D,E$ lần lượt là hình chiếu vuông góc của $H$ trên các cạnh $AB$ và $AC$. Các đường thẳng vuông góc với $DE$ tại $D$$E$ lần lượt cắt $BC$ tại $M,N$ . (hình vẽ)

Tính độ dài đoạn thẳng $DE$.

Trả lời bởi giáo viên

Đáp án đúng: d

Tứ giác $AEHD$ là hình chữ nhật vì $\widehat A = \widehat E = \widehat D = 90^\circ $ nên $DE = AH$

Xét $\Delta ABC$ vuông tại $A$$A{H^2} = HB.HC$$ = 4.9 = 36 \Rightarrow AH = 6$

Nên $DE = 6\,cm$.

Hướng dẫn giải:

Bước 1: Chứng minh $DE = AH$

Bước 2: Sử dụng hệ thức $A{H^2} = BH.CH$ từ đó tính $AH$$ \Rightarrow DE$.

Câu hỏi khác