Cho tam giác $ABC$, phân giác $AD$ . Gọi $E,F$ lần lượt là hình chiếu của $B$ và $C$ lên $AD$ .
Chọn khẳng định đúng.
Trả lời bởi giáo viên
Xét 2 tam giác vuông ABE và ACF ta có:
\(\widehat {BAE} = \widehat {CAF}\) (vì AD là tia phân giác của góc A)
\( \Rightarrow \Delta ABE\backsim\Delta ACF\;(g - g)\)
\( \Rightarrow \dfrac{{AE}}{{AF}} = \dfrac{{BE}}{{CF}}\;(1)\)
Xét 2 tam giác vuông BDE và CDF ta có:
\(\widehat {EDB} = \widehat {FDC}\) (2 góc đối đỉnh)
\( \Rightarrow \Delta BDE\backsim\Delta CDF\)(g – g)
\( \Rightarrow \dfrac{{BE}}{{CF}} = \dfrac{{DE}}{{DF}}\;(2)\)
Từ (1) và (2) ta có:
\(\dfrac{{AE}}{{AF}} = \dfrac{{DE}}{{DF}} \Leftrightarrow AE.DF = AF.DE\) (đpcm)
Hướng dẫn giải:
- Chứng minh các cặp tam giác đồng dạng phù hợp để tìm ra tỉ lệ thức thích hợp.
- Từ đó rút ra điều cần chứng minh.