Câu hỏi:
2 năm trước

Cho tam giác \(ABC\) có \(AB = AC.\) Trên các cạnh \(AB\) và \(AC\) lấy các điểm \(D,E\) sao cho \(AD = AE.\) Gọi \(K\) là giao điểm của \(BE\) và \(CD\). Chọn câu sai.

Trả lời bởi giáo viên

Đáp án đúng: d

Xét tam giác \(ABE\) và tam giác \(ACD\) có

+ \(AE = AD\left( {gt} \right)\)

 + Góc \(A\) chung

+ \(AB = AC\left( {gt} \right)\)

Suy ra \(\Delta ABE = \Delta ACD\left( {c - g - c} \right)\) \( \Rightarrow \widehat {ABE} = \widehat {ACD};\widehat {ADC} = \widehat {AEB}\) (hai góc tương ứng) và \(BE = CD\) (hai cạnh tương ứng) nên A đúng.

Lại có \(\widehat {ADC} + \widehat {BDC} = 180^\circ \); \(\widehat {AEB} + \widehat {BEC} = 180^\circ \) (hai góc kề bù) mà \(\widehat {ADC} = \widehat {AEB}\) (cmt)

Suy ra \(\widehat {BDC} = \widehat {BEC}.\)

Lại có \(AB = AC;\,AD = AE\left( {gt} \right)\) \( \Rightarrow AB - AD = AC - AE \Rightarrow BD = EC\) nên C đúng.

Xét tam giác \(KBD\) và tam giác \(KCE\) có

+ \(\widehat {ABE} = \widehat {ACD}\,\left( {cmt} \right)\)

+ \(BD = EC\,\left( {cmt} \right)\)

+  \(\widehat {BDC} = \widehat {BEC}\,\left( {cmt} \right)\)

Nên \(\Delta KBD = \Delta KCE\left( {g - c - g} \right)\) \( \Rightarrow KB = KC;\,KD = KE\) (hai cạnh tương ứng)  nên B đúng, D sai.

Hướng dẫn giải:

Dựa vào tính chất hai tam giác bằng nhau

Câu hỏi khác