Trên cạnh BC của tam giác ABC, lấy điểm E và F sao cho BE=CF. Qua E và F, vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. Chứng minh rằng EG+FH =AB
1 câu trả lời
Đáp án:
Giải thích các bước giải:
EG+ FH= AB
<=> EG/AB+ FH/AB = 1
Áp dụng tính chất đoạn thẳng tỷ lệ, ta có:
FH/AB= CF/BC
EG/AB =CE/BC=(CF+FE)/BC
= (CF + BC - 2CF)/BC=(BC-CF)/BC = 1- CF/BC
Vậy EG/AB+ FH/AB =1- CF/BC + CF/BC =1
Câu hỏi trong lớp
Xem thêm