Câu hỏi:
2 năm trước

Cho tam giác $ABC$ cân tại $A$ , đường cao $AH = 2cm,BC = 8cm$ . Đường vuông góc với $AC$ tại $C$ cắt đường thẳng $AH$ ở $D$ .

Các điểm nào sau đây cùng thuộc một đường tròn?

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có $\Delta ABC$ cân tại $A$ có đường cao $AH$ nên $AH$ cũng là đường phân giác $ \Rightarrow \widehat {CAD} = \widehat {DAB}$

Suy ra $\Delta ACD = \Delta ABD\left( {c - g - c} \right)$ nên $\widehat {ABD} = \widehat {ACD} = 90^\circ $.

Lấy $I$ là trung điểm $AD$. Xét hai tam giác vuông $ABD$ và $ACD$ có $IA = ID = IB = IC = \dfrac{{AD}}{2}$

Nên $I$ là điểm cách đều $A,B,D,C$ hay $A,B,D,C$ cùng nằm trên dường tròn tâm $I$ đường kính $AD$.

Hướng dẫn giải:

Xác định điểm cách đều cả bốn đỉnh  cho trước. 

Câu hỏi khác