Cho tam giác ABC biết $A\left( { - 1;\,\,2} \right),\,\,B\left( {2;\,\,0} \right),\,\,C\left( { - 3;\,\,1} \right)$. Tìm tọa độ điểm M thuộc BC sao cho ${S_{ABM}} = \dfrac{1}{3}{S_{ABC}}$.
Trả lời bởi giáo viên
Giả sử M(x; y) là điểm thỏa mãn điều kiện đề bài.
Kẻ AH vuông góc với BC. Suy ra
$\begin{array}{l}\dfrac{1}{2}BM.AH = \dfrac{1}{3}.\dfrac{1}{2}AH.BC \Rightarrow \overrightarrow {BM} = \dfrac{1}{3}\overrightarrow {BC} \\\left( {x - 2;y} \right) = \dfrac{1}{3}\left( { - 5;1} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 2 = - \dfrac{5}{3}\\y = \dfrac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{3}\\y = \dfrac{1}{3}\end{array} \right. \Rightarrow M\left( {\dfrac{1}{3};\dfrac{1}{3}} \right).\end{array}$
Hướng dẫn giải:
Tham số hóa tọa độ điểm M, sử dụng công thức tính diện tích tam giác và biểu diễn tọa độ các vector