Cho phương trình ${x^2} - \left( {m + 1} \right)x - 3 = 0$ (1), với \(x\) là ẩn, \(m\) là tham số. Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình (1). Đặt \(B = \dfrac{{3x_1^2 + 3x_2^2 + 4{x_1} + 4{x_2} - 5}}{{x_1^2 + x_2^2 - 4}}\). Tìm \(m\) khi \(B\) đạt giá trị lớn nhất.
Trả lời bởi giáo viên
Phương trình ${x^2} - \left( {m + 1} \right)x - 3 = 0$ (1)
+ Nhận xét \(\Delta = {\left( {m + 1} \right)^2} + 12 > 0,\,\,\forall m \in \mathbb{R}\). Suy ra (1) luôn có hai nghiệm phân biệt \({x_1},{x_2}\)
+ Theo hệ thức Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 1\\{x_1}{x_2} = - 3\end{array} \right.\).
Ta có \(B = \dfrac{{3x_1^2 + 3x_2^2 + 4{x_1} + 4{x_2} - 5}}{{x_1^2 + x_2^2 - 4}} = \dfrac{{3\left( {x_1^2 + x_2^2} \right) + 4\left( {{x_1} + {x_2}} \right) - 5}}{{x_1^2 + x_2^2 - 4}}\)
\( = \dfrac{{3\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] + 4\left( {{x_1} + {x_2}} \right) - 5}}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} - 4}} = \dfrac{{3\left[ {{{\left( {m + 1} \right)}^2} + 6} \right] + 4\left( {m + 1} \right) - 5}}{{{{\left( {m + 1} \right)}^2} + 6 - 4}}\)\( = \dfrac{{3{m^2} + 10m + 20}}{{{m^2} + 2m + 3}}\)
Nên \(B\) \( = \dfrac{{3{m^2} + 10m + 20}}{{{m^2} + 2m + 3}}\).
\( \Leftrightarrow \left( {B - 3} \right){m^2} + 2\left( {B - 5} \right)m + 3B - 20 = 0\) (*)
+ Nếu \(B = 3\) thì \(m = - \dfrac{{11}}{4}.\)
+ Nếu \(B \ne 3\) thì (*) là phương trình bậc hai ẩn \(m\). Phương trình (*) có nghiệm \(m\) khi và chỉ khi \(\Delta ' \ge 0\)
hay \({\left( {B - 5} \right)^2} - \left( {B - 3} \right)\left( {3B - 20} \right) \ge 0 \Leftrightarrow 2{B^2} - 19B + 35 \le 0\)\(\left( {2B - 5} \right)\left( {B - 7} \right) \le 0 \Leftrightarrow \dfrac{5}{2} \le B \le 7\)
Với \(B=7\) thì thay vào (*) ta có \(4m^2+4m+1=0\) \(\Leftrightarrow (2m+1)^2=0\)\(\Leftrightarrow m= - \dfrac{1}{2}.\)
Vậy giá trị lớn nhất của \(B\) bằng 7 khi \(m = - \dfrac{1}{2}.\)
Hướng dẫn giải:
+ Tìm \(m\) để phương trình có hai nghiệm phân biệt
+ Biến đổi \(B = \dfrac{{3x_1^2 + 3x_2^2 + 4{x_1} + 4{x_2} - 5}}{{x_1^2 + x_2^2 - 4}}\) để sử dụng hệ thức Vi-et đưa về biểu thức ẩn \(m\) để lập luận.