Cho phương trình \(A_x^3 + 2C_{x + 1}^{x - 1} - 3C_{x - 1}^{x - 3} = 3{x^2} + {P_6} + 159\). Giả sử \(x = {x_0}\) là nghiệm của phương trình trên, lúc này ta có:
Trả lời bởi giáo viên
ĐK: \(x \ge 3,x \in N\).
Phương trình đã cho có dạng
\(\begin{array}{l}\dfrac{{x!}}{{\left( {x - 3} \right)!}} + \dfrac{{2\left( {x + 1} \right)!}}{{2!\left( {x - 1} \right)!}} - \dfrac{{3\left( {x - 1} \right)!}}{{2!\left( {x - 3} \right)!}} = 3{x^2} + 6! + 159\\ \Leftrightarrow x\left( {x - 1} \right)\left( {x - 2} \right) + x\left( {x + 1} \right) - \dfrac{3}{2}\left( {x - 1} \right)\left( {x - 2} \right) = 3{x^2} + 879\\ \Leftrightarrow x = 12\,\,\left( {tm} \right)\end{array}\)
(Dùng lệnh SHIFT SLOVE trên máy tính)
Hướng dẫn giải:
Áp dụng các công thức chỉnh hợp, tổ hợp và hoán vị \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}\,;\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\,\,;\,\,{P_n} = n!\)