Câu hỏi:
2 năm trước

Cho nửa đường tròn đường kính \(AB = 2R.\) Từ \(A\) và \(B\) kẻ hai tiếp tuyến \(Ax,\,By.\) Trên \(Ax\) lấy điểm \(M\) rồi kẻ tiếp tuyến \(MP\) cắt \(By\) tại \(N.\)Khi đó tỉ số \(\dfrac{{{S_{MON}}}}{{{S_{APB}}}}\) trong trường hợp \(AM = \dfrac{R}{2}\) là:

Trả lời bởi giáo viên

Đáp án đúng: c

Theo tính chất hai tiếp tuyến cắt nhau ta có

\(OM\) là tia phân giác của góc \(\widehat {AOP}\) và \(ON\) là tia phân giác của góc \(\widehat {BOP}.\) Do đó \(\widehat {MOA} = \widehat {MOP},\,\,\widehat {PON} = \widehat {BON}\,\,\left( 1 \right).\)

Ta lại có \(\widehat {AOP},\,\widehat {BOP}\) là hai góc kề bù nên \(\widehat {AOP} + \,\widehat {BOP} = {180^0}\,\,\left( 2 \right).\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta suy ra

$\widehat {MON} = \widehat {MOP} + \widetilde {PON} = \dfrac{1}{2}\left( {\widehat {AOM} + \widehat {MOP} + \widehat {PON} + \widehat {NOB}} \right)$

$ = \dfrac{1}{2}\left( {\widehat {AOP} + \widehat {POB}} \right) = \dfrac{1}{2}{.180^0} = {90^0}\,\,.$

Nên tam giác \(MON\) là tam giác vuông tại \(O\) có \(OP \bot MN\) (\(OP\) là tiếp tuyến).

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông \(MON\) ta có \(O{P^2} = PN.PM.\)

Ta lại có \(OP = R,\,AM = PM,\,BN = NP\) (tính chất hai tiếp tuyến cắt nhau).

Do đó \(AM.BN = {R^2}.\)

hay \(PN.PM = {R^2}\)

Mà \(PM = AM = \dfrac{R}{2} \Rightarrow PM = \dfrac{R}{2} \Rightarrow PN = 2R.\)

Do đó \(MN = PM + PN = \dfrac{R}{2} + 2R = \dfrac{{5R}}{2} \Rightarrow \dfrac{{MN}}{{AB}} = \dfrac{{\dfrac{{5R}}{2}}}{{2R}} = \dfrac{5}{4}\)

Ta có có \(\widehat {APB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {APB} = {90^0}\,\,\left( 4 \right).\)

Theo tính chất hai tiếp tuyến ta có

\(NB \bot ON \Rightarrow \widehat {OBN} = {90^0},\,\,NP \bot OP \Rightarrow \widehat {OPN} = {90^0} \Rightarrow \widehat {OBN} + \widehat {OPN} = {180^0}.\)

Do đó tứ giác \(OBNP\) là tứ giác nội tiếp. Từ đó \(\widehat {OBP} = \widehat {PNO}\,\,\left( 5 \right).\)

Từ \(\,\left( 4 \right)\); \(\left( 5 \right)\) và \(\widehat {MON} = 90^\circ \) suy ra hai tam giác vuông \(APB\) và \(MON\) đồng dạng với nhau.

Suy ra  \(\dfrac{{{S_{MON}}}}{{{S_{APB}}}} = {\left( {\dfrac{{MN}}{{AB}}} \right)^2} = {\left( {\dfrac{5}{4}} \right)^2} = \dfrac{{25}}{{16}}.\)

Hướng dẫn giải:

+ Sử dụng tính chất hai tiếp tuyến cắt nhau và tính chất tia phân giác của hai góc kề bù để chứng minh \(\widehat {MON} = {90^0}\).

+ Sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông và tính chất hai tiếp tuyến cắt nhau để chứng minh \(AM.BN = {R^2}\).

+ Tính độ dài \(MN\) theo \(R\) rồi suy ra tỉ số đồng dạng \(k\) của hai tam giác \(MON\) và \(APB\).

+ Dùng trường hợp đồng dạng góc – góc để chứng minh \(\Delta MON \backsim \Delta APB\).

+ Sử dụng tính chất tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng để có kết luận.

Câu hỏi khác