Câu hỏi:
2 năm trước
Cho hình phẳng \((D)\) được giới hạn bởi các đường \(x = 0,\,\,x = \pi ,\,\,y = 0\) và \(y=-\sin x.\) Thể tích \(V\) của khối tròn xoay tạo thành khi quay \((D)\) xung quanh trục \(Ox\) được tính theo công thức
Trả lời bởi giáo viên
Đáp án đúng: b
Thể tích khối tròn xoay cần tính là \(V=\pi \int\limits_{0}^{\pi }{{{\left( -\,\sin x \right)}^{2}}\,\text{d}x}=\pi \int\limits_{0}^{\pi }{{{\sin }^{2}}x\,\text{d}x}.\)
Hướng dẫn giải:
Áp dụng công thức tính thể tích của khối tròn xoay \(V = \pi \int\limits_a^b {{f^2}\left( x \right)\,{\rm{d}}x} \)
Câu hỏi khác
Câu 5:
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)
99