Cho hình nón có chiều cao \(h = 10\,cm\) và thể tích \(V = 1000\pi \,\left( {c{m^3}} \right)\) . Tính diện tích toàn phần của hình nón
Trả lời bởi giáo viên
Ta có \(V = \dfrac{1}{3}\pi {R^2}h \Leftrightarrow \dfrac{1}{3}\pi {R^2}.10 = 1000\pi \Rightarrow {R^2} = 300 \Rightarrow R = 10\sqrt 3 \)
Và \({R^2} + {h^2} = {l^2} \Leftrightarrow {10^2} + {\left( {10\sqrt 3 } \right)^2} = {l^2} \Leftrightarrow l = 20\,cm\)
Diện tích toàn phần của hình nón là \({S_{tp}} = \pi Rl + \pi {R^2} = \pi .10\sqrt3.20 + \pi.300= (300+200\sqrt3)\pi \,\left( {c{m^2}} \right)\)
Hướng dẫn giải:
Sử dụng công thức thể tich khối nón \(V = \dfrac{1}{3}\pi {R^2}h\) để tính bán kính đường tròn đáy
Sử dụng công thức liên hệ\({R^2} + {h^2} = {l^2}\) để tìm đường sinh của hình nón
Sử dụng công thức tính diện tích toàn phần của hình nón \({S_{tp}} = \pi Rl + \pi {R^2}\)