Câu hỏi:
2 năm trước
Cho hàm số $y = {x^3} - 3{x^2} + 5x - 2$ có đồ thị $(C)$. Viết phương trình tiếp tuyến của đồ thị $(C)$ có hệ số góc nhỏ nhất.
Trả lời bởi giáo viên
Đáp án đúng: b
Xét hàm số: $y = {x^3} - 3{x^2} + 5x - 2$ trên $R$
Có $y' = 3{x^2} - 6x + 5 = 3{\left( {x - 1} \right)^2} + 2 \geqslant 2.$
Dấu “=” xảy ra $x = 1.$
Với $x = 1 \Rightarrow y = 1.$
Vậy đường thẳng cần tìm là: $y - 1 = 2\left( {x - 1} \right) \Leftrightarrow y = 2x - 1.$
Hướng dẫn giải:
Hệ số góc của tiếp tuyến là giá trị của đạo hàm tại tiếp điểm nên để có hệ số góc nhỏ nhất thì ta cần tìm GTNN của đạo hàm.
Câu hỏi khác
Câu 5:
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)
99