Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;4} \right]\) và có đồ thị như hình vẽ
Có tất cả bao nhiêu giá trị nguyên của m thuộc đoạn \(\left[ { - 10;10} \right]\) để bất phương trình \(\left| {f\left( x \right) + m} \right| < 2m\) đúng với mọi x thuộc đoạn \(\left[ { - 1;4} \right]\)?
Trả lời bởi giáo viên
Ta có: \(\left| {f\left( x \right) + m} \right| < 2m\)
\(\Leftrightarrow - 2m < f\left( x \right) + m < 2m\)
\(\Leftrightarrow - 3m < f\left( x \right) < m\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 3m < \mathop {\min }\limits_{\left[ { - 1;4} \right]} f\left( x \right)\\\mathop {\max }\limits_{\left[ { - 1;4} \right]} f\left( x \right) < m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3m < - 2\\3 < m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \dfrac{2}{3}\\m > 3\end{array} \right. \Leftrightarrow m > 3\).
Kết hợp điều kiện đề bài \( \Rightarrow m \in \left( {3;10} \right],\,\,m \in \mathbb{Z} \Rightarrow m \in \left\{ {4;5;6;7;8;9;10} \right\}\).
Vậy có 7 giá trị của m thỏa mãn yêu cầu bài toán.
Hướng dẫn giải:
Biến đổi BPT:
\(\left| {f\left( x \right) + m} \right| < 2m\)
\(\Leftrightarrow - 2m < f\left( x \right) + m < 2m\)
\(\Leftrightarrow - 3m < f\left( x \right) < m\)