Cho hàm số $f\left( x \right) = \dfrac{{{3^x}}}{{{7^{{x^2} - 4}}}}$. Hỏi khẳng định nào sau đây là sai?
Trả lời bởi giáo viên
\(\begin{array}{l}f(x) = \dfrac{{{3^x}}}{{{7^{{x^2} - 4}}}} > 9 \Leftrightarrow {3^x} > {9.7^{{x^2} - 4}} \Leftrightarrow {3^x} > {3^2}{.7^{{x^2} - 4}} \Leftrightarrow {3^{x - 2}} > {7^{{x^2} - 4}}\\ \Leftrightarrow {\log _3}{3^{x - 2}} > {\log _3}{7^{{x^2} - 4}} \Leftrightarrow x - 2 > ({x^2} - 4){\log _3}7\end{array}\)
Từ đó dựa vào các đáp án ta thấy A đúng.
$\begin{array}{l}{3^{x - 2}} > {7^{{x^2} - 4}}\\ \Leftrightarrow \ln {3^{x - 2}} > \ln {7^{{x^2} - 4}} \Leftrightarrow (x - 2)\ln3 > ({x^2} - 4)\ln 7\end{array}$ => B đúng
$\begin{array}{l}{3^{x - 2}} > {7^{{x^2} - 4}}\\ \Leftrightarrow \log {3^{x - 2}} > \log {7^{{x^2} - 4}} \Leftrightarrow (x - 2)\log3 > ({x^2} - 4)\log 7\end{array}$ => C đúng
$\begin{array}{l}{3^{x - 2}} > {7^{{x^2} - 4}}\\ \Leftrightarrow {\log _{0,2}}{3^{x - 2}} < {\log _{0,2}}{7^{{x^2} - 4}} \Leftrightarrow (x - 2)\log_{{0,2}}3 < ({x^2} - 4){\log _{0,2}}7\end{array}$ => D sai
Hướng dẫn giải:
Dùng phương pháp logarit hai vế.