Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,\,x < 3,\,\,x \ne 1\\4 & {\rm{khi}}\,\,x = 1\\\sqrt {x + 1} & {\rm{khi}}\,\,x \ge 3\end{array} \right.\). Hàm số \(f\left( x \right)\) liên tục tại:
Trả lời bởi giáo viên
Hàm số \(y = f\left( x \right)\) có TXĐ: \({\rm{D}} = \mathbb{R}\).
Dễ thấy hàm số \(y = f\left( x \right)\) liên tục trên mỗi khoảng \(\left( { - \infty ;1} \right),\left( {1;3} \right)\) và \(\left( {3; + \infty } \right)\).
Ta có \(\left\{ \begin{array}{l}f\left( 1 \right) = 4\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\end{array} \right.\) \( \Rightarrow f\left( x \right)\) gián đoạn tại \(x = 1.\)
Ta có \(\left\{ \begin{array}{l}f\left( 3 \right) = 2\\\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \dfrac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( {x + 1} \right) = 4\end{array} \right.\) \( \Rightarrow f\left( x \right)\) gián đoạn tại \(x = 3.\)
Hướng dẫn giải:
Hàm số liên tục trên một khoảng nếu nó liên tục tại mọi điểm thuộc khoảng đó.