Lim x -> âm vô cùng ( 4 căn ( x^2 -3x +1 ) +2x+1 )
1 câu trả lời
Đáp án:
\(\dfrac{8}{3}\)
Giải thích các bước giải:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } \left( {4\sqrt {{x^2} - 3x + 1} + 2x + 1} \right)\\
= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{4\left( {{x^2} - 3x + 1} \right) - {{\left( {2x + 1} \right)}^2}}}{{4\sqrt {{x^2} - 3x + 1} - 2x - 1}}\\
= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{4{x^2} - 12x + 4 - 4{x^2} - 4x - 1}}{{4\sqrt {{x^2} - 3x + 1} - 2x - 1}}\\
= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 16x + 3}}{{4\sqrt {{x^2} - 3x + 1} - 2x - 1}}\\
= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 16 + \dfrac{3}{{{x^2}}}}}{{ - 4\sqrt {1 - \dfrac{3}{x} + \dfrac{1}{{{x^2}}}} - 2 - \dfrac{1}{{{x^2}}}}}\\
= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - 16}}{{ - 4 - 2}} = \dfrac{8}{3}
\end{array}\)
