Cho đường tròn $\left( {O;R} \right)$ có hai dây $AB,CD$ vuông góc với nhau ở $M$. Biết $AB = 14\,cm;\,CD = 12\,cm;\,MC = 2\,cm.$ Bán kính $R$ và khoảng cách từ tâm $O$ đến dây $CD$ lần lượt là
Trả lời bởi giáo viên
Lấy $E$; $F$ lần lượt là trung điểm của hai dây $AB$ và $CD$. Khi đó
\(OE \bot AB;\,OF \bot AC\) lại có \(\widehat {FME} = 90^\circ \) nên \(OEMF\) là hình chữ nhật. Suy ra $OE=MF=CF-MC=4 \,\ cm.$
Xét đường tròn tâm $\left( O \right)$,
Có $OE = \,4\,cm$, $E$ là trung điểm của $AB$ nên $AE = \dfrac{{14}}{2} = 7cm$
Áp dụng định lý Pytago cho tam giác vuông $OEA$ ta có $OA = \sqrt {A{E^2} + O{E^2}} = \sqrt {65} $ nên $R = \sqrt {65} $
Lại có $OD = \sqrt {65} \,\ cm ;FD = 6 \,\ cm$ nên áp dụng định lý Pytago cho tam giác vuông $OFD$ ta có
$OF = \sqrt {O{D^2} - F{D^2}} = \sqrt {29} \,\ cm$. Do đó khoảng cách từ tâm đến dây $CD$ là $\sqrt {29} $$cm$ .
Hướng dẫn giải:
Kẻ các đường vuông góc từ tâm đến dây. Sử dụng mối liên hệ giữa dây và đường kính và tính chất hình chữ nhật để suy ra khoảng cách.