Câu hỏi:
2 năm trước

Cho đồ thị hàm số  $y = 2{x^2}$$\left( P \right)$ như hình vẽ. Dựa vào đồ thị, tìm $m$ để phương trình $2{x^2} - m - 5 = 0$ có hai nghiệm phân biệt.

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có $2{x^2} - m - 5 = 0$ (*) $ \Leftrightarrow 2{x^2} = m + 5$

Số nghiệm của phương trình (*) là số giao điểm của parabol $\left( P \right):y = 2{x^2}$ và đường thẳng $d:y = m + 5$.

Để (*) có hai nghiệm phân biệt thì $d$ cắt $\left( P \right)$ tại hai điểm phân biệt. Từ đồ thị hàm số ta thấy

Với $m + 5 > 0 \Leftrightarrow m >  - 5$ thì $d$ cắt $\left( P \right)$ tại hai điểm phân biệt hay  phương trình  (*) có hai nghiệm phân biệt khi $m >  - 5$.

Hướng dẫn giải:

Đưa phương trình về dạng ${\rm{a}}{{\rm{x}}^2} = mx + n$ (*)

Gọi parabol $\left( P \right):y = a{x^2}$ và đường thẳng $d:y = mx + n$

Số nghiệm của (*) bằng đúng số giao điểm của .

- Nếu $(d)$ không cắt $(P)$ thì (*) vô nghiệm

- Nếu $(d)$ tiếp xúc với $(P)$ thì (*) có nghiệm kép

- Nếu $(d)$ cắt $(P)$ tại hai điểm phân biệt thì (*) có 2 nghiệm phân biệt .

Câu hỏi khác