Cho \(\Delta ABC.\) Trên tia đối của tia \(BC\) lấy điểm \(E,\) trên tia đối của tia \(CB\) lấy điểm \(F\) sao cho \(BE = CF.\) Gọi \(G\) là trọng tâm tam giác \(ABC.\)\(AG\) cắt \(BC\) tại \(M\). Lấy \(H\) là trung điểm \(AG.\) Nối \(EG\) cắt \(AF\) tại \(N.\) Lấy \(I\) là trung điểm \(EG.\)
Chọn câu đúng.
Trả lời bởi giáo viên
Theo câu trước ta có: \(G\) là trọng tâm \(\Delta AEF\) nên \(EG = \dfrac{2}{3}EN\) (tính chất ba đường trung tuyến của tam giác)
Mà \(GI = \dfrac{1}{2}EG\) (vì \(I\) là trung điểm của \(EG\))
Suy ra \(GI = \dfrac{1}{2}.\dfrac{2}{3}EN = \dfrac{1}{3}EN\)
Mặt khác \(GN = \dfrac{1}{3}EN\) (vì \(G\) là trọng tâm \(\Delta AEF\))
Do đó \(GI = GN\).
Theo câu trước ta có: \(AG = \dfrac{2}{3}AM\) mà \(GH = \dfrac{1}{2}AG\) (vì \(H\) là trung điểm của \(AG\))
Suy ra \(GH = \dfrac{1}{2}.\dfrac{2}{3}AM = \dfrac{1}{3}AM\)
Mặt khác \(GM = \dfrac{1}{3}AM\) (vì \(G\) là trọng tâm \(\Delta AEF\))
Do đó \(GH = GM\).
Xét \(\Delta GHI\) và \(\Delta GMN\) có:
\(GI = GN\) (cmt)
\(\widehat {HGI} = \widehat {NGM}\) (hai góc đối đỉnh)
\(GH = GM\) (cmt)
Vậy \(\Delta GHI = \Delta GMN\,(c.g.c)\) \(\Rightarrow HI = MN\) (hai cạnh tương ứng); \(\widehat {IHG} = \widehat {NMG}\) (hai góc tương ứng)
Mà \(\widehat {IHG};\widehat {NMG}\) ở vị trí so le trong nên \(HI//MN\).
Hướng dẫn giải:
+ Chứng minh \(GI = GN\); \(GH = GM\)
+ Chứng minh \(\Delta GHI = \Delta GMN\,(c.g.c)\), từ đó suy ra \(HI = MN\)
+ Dựa vào dấu hiệu nhận biết hai đường thẳng song song, chứng minh \(HI//MN\): Nếu đường thẳng \(c\) cắt hai đường thẳng \(a,b\) và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì \(a,b\) song song với nhau.