Cho \(\int\limits_0^b {\frac{{{e^x}}}{{\sqrt {{e^x} + 3} }}dx} = 2\) với \(b \in K\). Khi đó $K$ có thể là khoảng nào trong các khoảng sau?
Trả lời bởi giáo viên
Đặt \(t = \sqrt {{e^x} + 3} \Rightarrow {t^2} = {e^x} + 3 \Leftrightarrow 2tdt = {e^x}dx\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 2\\x = b \Rightarrow t = \sqrt {{e^b} + 3} \end{array} \right.\)
Khi đó ta có:
\(\int\limits_0^b {\frac{{{e^x}}}{{\sqrt {{e^x} + 3} }}dx} = 2 \Leftrightarrow \int\limits_2^{\sqrt {{e^b} + 3} } {\frac{{2tdt}}{t}} = 2 \Leftrightarrow \left. t \right|_2^{\sqrt {{e^b} + 3} } = 1 \Leftrightarrow \sqrt {{e^b} + 3} - 2 = 1 \Leftrightarrow b = \ln 6 \approx 1,8\)
Vậy trong các khoảng ở đáp án chỉ có đáp án A thỏa mãn.
Hướng dẫn giải:
Sử dụng phương pháp đổi biến, đặt \(t = \sqrt {{e^x} + 3} \).