Câu hỏi:
2 năm trước

Biết số phức $z = x + yi{\rm{ }}\left( {x;y \in \mathbb{R}} \right)$ thỏa mãn đồng thời các điều kiện $\left| {z - \left( {3 + 4i} \right)} \right| = \sqrt 5 $ và biểu thức $P = {\left| {z + 2} \right|^2} - {\left| {z - i} \right|^2}$ đạt giá trị lớn nhất. Tính $\left| z \right|$.

Trả lời bởi giáo viên

Đáp án đúng: d

Vì $\left| {z - \left( {3 + 4i} \right)} \right| = \sqrt 5  \Rightarrow {\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 5.$

Suy ra tập hợp các điểm biểu diễn số phức \(z\) là đường tròn $\left( C \right)$ có tâm $I\left( {3;4} \right)$ và bán kính $R = \sqrt 5 $.

Ta có $P = {\left| {\left( {x + 2} \right) + yi} \right|^2} - {\left| {x + \left( {y - 1} \right)i} \right|^2} = {\left( {x + 2} \right)^2} + {y^2} - \left[ {{x^2} + {{\left( {y - 1} \right)}^2}} \right]$.

$ = 4x + 2y + 3 \Leftrightarrow 4x + 2y + 3 - P = 0.$

Ta tìm $P$ sao cho đường thẳng $\Delta :4x + 2y + 3 - P = 0$ và đường tròn $\left( C \right)$ có điểm chung $ \Leftrightarrow d\left[ {I,\Delta } \right] \le R \Leftrightarrow \dfrac{{\left| {12 + 8 + 3 - P} \right|}}{{\sqrt {20} }} \le \sqrt 5  \Leftrightarrow \left| {23 - P} \right| \le 10 \Leftrightarrow 13 \le P \le 33.$

Do đó ${P_{\max }} = 33$. Dấu $'' = ''$ xảy ra $ \Leftrightarrow \left\{ \begin{array}{l}4x + 2y - 30 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = \,5\end{array} \right.$.

Vậy $\left| z \right| = \sqrt {{5^2} + {{\left( { - 5} \right)}^2}}  = 5\sqrt 2 $.

Hướng dẫn giải:

- Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\)

- Bước 2: Thay \(z\) và biểu thức đã cho tìm mối quan hệ của \(x,y\) suy ra tập hợp biểu diễn của số phức \(z\).

- Bước 3: Sử dụng mối quan hệ hình học để tìm mô đun số phức cần tìm.

Câu hỏi khác