Câu hỏi:
2 năm trước

Từ các chữ số $0,1,2,3,4,5,6$ có thể lập được bao nhiêu số chẵn, mỗi số có $5$  chữ số khác nhau trong đó có đúng hai chữ số lẻ và $2$ chữ số lẻ đứng cạnh nhau?

Trả lời bởi giáo viên

Đáp án đúng: a

Gọi \(A\) là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số \(0,1,2,3,4,5,6\) số cách chọn được \(A\) là \(A_3^2 = 6\). Số chẵn có $5$ chữ số mà hai số lẻ đứng kề nhau phải chứa \(A\) và ba trong $4$ chữ số $0;2;4;6.$ Gọi \(\overline {abcd} ;a,b,c,d \in \{ A,0,2,4,6\} \) là số thỏa mãn yêu cầu bài toán.

* TH1: Nếu \(a = A\) có $1$ cách chọn \(a\) và \(A_4^3\) cách chọn \(b,c,d\).

* TH2: \(a \ne A\) có $3$ cách chọn \(a\)

+ Nếu \(b = A\) có $1$ cách chọn \(b\) và \(A_3^2\) cách chọn \(c,d\).

+ Nếu \(c = A\) có $1$ cách chọn \(c\) và \(A_3^2\) cách chọn \(b,d\).

Vậy có \(A_3^2\left( {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} \right)} \right) = 360\) số thỏa mãn yêu cầu bài toán.

Hướng dẫn giải:

- Coi hai số lẻ đứng cạnh nhau là một số \(A\), đếm số cách chọn \(A\)

- Gọi số tự nhiên thỏa mãn bài toán là \(\overline {abcd} \) trong đó có chứa số \(A\), đếm số cách chọn từng chữ số và kết luận.

Câu hỏi khác