Tính \(F\left( x \right) = \int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {4{{\sin }^2}x + 2{{\cos }^2}x + 3} }}} d{\rm{x}}\). Hãy chọn đáp án đúng.
Trả lời bởi giáo viên
Ta có: $4{\sin ^2}x + 2{\cos ^2}x + 3 = \frac{{4\left( {1 - \cos 2x} \right)}}{2} + \frac{{2\left( {1 + \cos 2x} \right)}}{2} + 3 = 6 - \cos 2x$
\(\int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {4{{\sin }^2}x + 2{{\cos }^2}x + 3} }}} d{\rm{x}} = \int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {6 - \cos 2{\rm{x}}} }}} d{\rm{x}}\)
Đặt \(u=6-\cos2x =>du=d(6-\cos2x)=2\sin2xdx\)
=> \(\sin2xdx=\dfrac{d(6-\cos2x)}{2}\)
=>\( \int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {6 - \cos 2{\rm{x}}} }}} d{\rm{x}}\) \({\rm{ = }}\int {\dfrac{{d\left( {6 - \cos 2{\rm{x}}} \right)}}{{2\sqrt {6 - \cos 2{\rm{x}}} }}} = \sqrt {6 - \cos 2{\rm{x}}} + C\)
Hướng dẫn giải:
Biến đổi hàm số dưới dấu nguyên hàm rồi sử dụng phương pháp đổi biến tìm nguyên hàm.