Trả lời bởi giáo viên
Áp dụng định lý Pi-ta-go trong tam giác $ABC$ vuông tại $A$ ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = \sqrt {100} = 10\,cm.\)
Áp dụng định lý Pi-ta-go trong tam giác $ABH$ vuông tại $H$ ta có:
\(A{H^2} = A{B^2} - B{H^2} = 36 - B{H^2}.\)
Áp dụng định lý Pi-ta-go trong tam giác $ACH$ vuông tại $H$ ta có:
\(\begin{array}{l}A{H^2} = A{C^2} - H{C^2} = 64 - H{C^2}.\\ \Rightarrow 36 - B{H^2} = 64 - H{C^2}\\ \Leftrightarrow 36 - B{H^2} = 64 - {\left( {10 - BH} \right)^2}\\\left( {do\,\,\,HC + BH = BC = 10} \right)\\ \Leftrightarrow 28 - 100 + 20BH - B{H^2} + B{H^2} = 0\\ \Leftrightarrow 20BH = 72\\ \Leftrightarrow BH = 3,6\,\,\,cm.\\ \Rightarrow AH = \sqrt {36 - B{H^2}} = \sqrt {36 - 3,{6^2}} = 4,8\,\,cm.\end{array}\)
Xét tứ giác $AEHF$ có: \(\widehat A = \widehat E = \widehat F = {90^0}\,\,\,\left( {gt} \right)\)
\( \Rightarrow AEHF\) là hình chữ nhật (dhnb) \( \Rightarrow AH = EF\,\,\,\) (hai đường chéo hình chữ nhật bằng nhau).
\( \Rightarrow EF = AH = 4,8\,\,cm.\)
Hướng dẫn giải:
+) Sử dụng định lý Pi-ta-go để tính độ dài cạnh huyền $BC.$
+) Áp dụng định lý Pi-ta-go với các tam giác vuông $AHC$ và $BHC$ để tính cạnh $AH.$
+) Chứng minh tứ giác $AEHF$ là hình chữ nhật, từ đó suy ra hai đường chéo $AH = EF.$