Số nghiệm của phương trình ${x^2} - 6{\rm{x}} + 9 = 4\sqrt {{x^2} - 6{\rm{x}} + 6} $ là:
Trả lời bởi giáo viên
Điều kiện: ${x^2} - 6{\rm{x}} + 6 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le 3 - \sqrt 3 \\x \ge 3 + \sqrt 3 \end{array} \right.$
Đặt: $\sqrt {{x^2} - 6{\rm{x}} + 6} = t\,\,\,\left( {t \ge 0} \right) $ $\Leftrightarrow {x^2} - 6{\rm{x}} + 6 = {t^2} $ $\Leftrightarrow {x^2} - 6{\rm{x}} + 9 = {t^2} + 3$
Khi đó, phương trình trở thành: $ \Leftrightarrow {t^2} + 3 = 4t \Leftrightarrow {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\left( {tm} \right)\\t = 3\,\,\,\,\left( {tm} \right)\end{array} \right.$
+) Với $t = 1$ $ \Rightarrow {x^2} - 6{\rm{x}} + 6 = 1$ $ \Leftrightarrow {x^2} - 6{\rm{x}} + 5 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\,\left( {tm} \right)\\x = 5\,\,\,\,\left( {tm} \right)\end{array} \right.$
+) Với $t = 3$ $ \Rightarrow {x^2} - 6{\rm{x}} + 6 = 9 $ $\Leftrightarrow {x^2} - 6x - 3 = 0 $ $\Leftrightarrow \left[ \begin{array}{l}x = 3 + 2\sqrt 3 \,\,\,\,\left( {tm} \right)\\x = 3 - 2\sqrt 3 \,\,\,\,\,\left( {tm} \right)\end{array} \right.$
Vậy phương trình có $4$ nghiệm.
Hướng dẫn giải:
+Phương trình có dạng: ${\rm{af}}(x) + b\sqrt {f(x)} + c = 0$ điều kiện : \(f(x) \ge 0\)
+ Đặt $\sqrt {f(x)} = t\,\,\,\left( {t \ge 0} \right)$ , phương trình $ \Leftrightarrow a{t^2} + bt + c = 0$