Ở một thời điểm, vận tốc của một vật dao động điều hòa bằng 20% vận tốc cực đại, tỉ số giữa động năng và thế năng của vật là:
Ở một thời điểm, vận tốc của một vật dao động điều hòa bằng 20% vận tốc cực đại, tỉ số giữa động năng và thế năng của vật là:
Trả lời bởi giáo viên
Khi v = 20%vmax = 0,2 Aω
Áp dụng hệ thức độ lập ta có:
\({A^2} = {x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}} \to {x^2} = {A^2} - \dfrac{{{v^2}}}{{{\omega ^2}}} = {A^2} - \dfrac{{{{(0,2A\omega )}^2}}}{{{\omega ^2}}} = 0,96{A^2}\)
Khi đó, ta có:
+ Động năng của vật: \({{\text{W}}_d} = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}m{(0,2)^2}{\omega ^2}{A^2}\)
+ Thế năng của vật: \({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2} = \dfrac{1}{2}m{\omega ^2}{x^2} = \dfrac{1}{2}m{\omega ^2}0,96.{A^2}\)
\(\dfrac{{{{\text{W}}_d}}}{{{{\text{W}}_t}}} = \dfrac{{\dfrac{1}{2}m{{(0,2)}^2}{\omega ^2}{A^2}}}{{\dfrac{1}{2}m{\omega ^2}0,96.{A^2}}} = \dfrac{1}{{24}}\)
Hướng dẫn giải:
+ Áp dụng hệ thức độc lập A-x-v: \({A^2} = {x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}\)
+ Áp dụng biểu thức xác định động năng của vật: \({{\text{W}}_d} = \dfrac{1}{2}m{v^2}\)
+ Áp dụng biểu thức xác định thế năng của vật: \({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2}\)