Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất $50$ sản phầm. Khi thực hiện tổ đã sản xuất được $57$ sản phẩm một ngày. Do đó hoàn thành trước kế hoạch $1$ ngày và còn vượt mức $13$ sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm?
Trả lời bởi giáo viên
Gọi tổng sản phẩm tổ phải sản xuất theo kế hoạch là \(x\,\left( {x > 0} \right)\) (sản phẩm)
Thời gian theo kế hoạch là \(\dfrac{x}{{50}}\) (ngày)
Theo thực tế số sản phẩm tổ đã làm là \(x + 13\)(sản phẩm)
Vì thực tế tổ hoàn thành trước kế hoạch \(1\) ngày nên ta có phương trình
\(\dfrac{{x + 13}}{{57}} + 1 = \dfrac{x}{{50}} \Leftrightarrow 50\left( {x + 13} \right) + 2850 = 57x\)
\( \Leftrightarrow 7x = 3500 \Leftrightarrow x = 500\,\left( {TM} \right)\)
Vậy tổng sản phẩm theo kế hoạch là \(500\) sản phẩm.
Hướng dẫn giải:
Giải bài toán năng suất bằng cách lập phương trình
+) Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
+) Sau đó dựa vào giả thiết của đề bài để lập phương trình.
+) Giải phương trình rồi so sánh điều kiện để kết luận.
Sử dụng: Năng suất bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành